Couches minces pour la conversion de longueur d'onde pour le photovoltaïque

S. Forissier^{1,2}, J.-L. Deschanvres¹, B Moine²

 Laboratoire des Matériaux et du Génie Physique / Grenoble-INP, CNRS / MINATEC, 3 parvis Louis Néel, 38016 Grenoble, France
Laboratoire de Physico-Chimie des Matériaux Luminescents UMR 5620 CNRS / Université Claude Bernard Lyon 1, 10 rue Ada Byron 69622 Villeurbanne, France

Couches minces de conversion de longueur d'onde

Introduction

Le photovoltaïque La conversion de longueur d'onde Le matériau

Élaboration MOCVD

Caractérisation Morphologie Propriétés physico-chimiques Propriétés de luminescence

Conclusion

Sébastien Forissier

Couches minces de conversion de longueur d'onde

Plan

Introduction Le photovoltaïque La conversion de longueur d'onde Le matériau Elaboration MOCVD Caractérisation Morphologie Propriétés physico-chimiques Propriétés de luminescence Conclusion

Couches minces de conversion de longueur d'onde

Introduction

Le photovoltaïque La conversion de longueur d'onde Le matériau

Élaboration MOCVD

Caractérisation Morphologie Propriétés physico-chimiques Propriétés de luminescence

Conclusion

Sébastien Forissier

Couches minces de conversion de longueur d'onde

Couches minces de conversion de longueur d'onde

Le photovoltaïque La conversion de longueur d'onde Le matériau

Elaboration MOCVD

Caractérisation Morphologie Propriétés physico-chimiques Propriétés de luminescence

Conclusion

27 Mars 2012

Sébastien Forissier

Couches minces de conversion de longueur d'onde

Sébastien Forissier

Couches minces de conversion de longueur d'onde

Couches minces de conversion de longueur d'onde

Introduction

Le photovoltaïque La conversion de longueur d'onde Le matériau

Élaboration MOCVD

Caractérisation Morphologie Propriétés physico-chimiques Propriétés de luminescence

Conclusion

27 Mars 2012

Sébastien Forissier

Couches minces de conversion de longueur d'onde

Mécanismes de conversion de longueur d'onde

Couches minces de conversion de longueur d'onde

Introduction

Le photovoltaïque La conversion de longueur d'onde Le matériau

Élaboration MOCVD

Caractérisation Morphologie Propriétés physico-chimiques Propriétés de luminescence

Conclusion

Sébastien Forissier

Couches minces de conversion de longueur d'onde

Choix de la matrice et des ions

Couches minces de conversion de longueur d'onde

Introduction

Le photovoltaïque La conversion de longueur d'onde Le matériau

Élaboration MOCVD

Caractérisation Morphologie Propriétés Propriétés de luminescence

Conclusion

Couches minces de conversion de longueur d'onde

Choix de la matrice et des ions

Ions

- ▶ Ytterbium : émetteur $2F_{5/2} \rightarrow 2F_{7/2}$
- ▶ Thulium : sensibilisateur $1D2 \rightarrow 3F$

Matrice

- ▶ faible énergie de phonon
- ► transparence
- ▶ croissance facile
- ► fort indice

Matrices choisies : TiO_2 puis Y_2O_3

Couches minces de conversion de longueur d'onde

Introduction

Le photovoltaïque La conversion de longueur d'onde Le matériau

Élaboration MOCVD

Caractérisation Morphologie Propriétés physico-chimiques Propriétés de luminescence

Conclusion

Sébastien Forissier

Bâti

Définition

AAMOCVD : Aerosol-assisted Metal-Organic Chemical Vapor Deposition

Description du bâti

- ► Solvant : butanol (+AcAc)
- Précurseurs acétylacétonate : TiO, Yb, Y
- Précurseurs tétramethylheptanedionate : Tm

Couches minces de conversion de longueur d'onde

Introduction

Le photovoltaïque La conversion de longueur d'onde Le matériau

Élaboration MOCVD

Caractérisation Morphologie Propriétés physico-chimiques Propriétés de luminescence

Conclusion

Sébastien Forissier

Couches minces de conversion de longueur d'onde

Bâti

Définition

AAMOCVD : Aerosol-assisted Metal-Organic Chemical Vapor Deposition

Description du bâti

- Synthèse à pression atmosphérique (gaz porteur : air)
- \blacktriangleright Synthèse de 300 °C à 600 °C
- ► Assistance par aérosol
- ► Vitesse de croissance : $0,1 \,\mu \text{m} \cdot \text{h}^{-1}$ à $1 \,\mu \text{m} \cdot \text{h}^{-1}$

Couches minces de conversion de longueur d'onde

Introduction

Le photovoltaïque La conversion de longueur d'onde Le matériau

Élaboration MOCVD

Caractérisation Morphologie Propriétés physico-chimiques Propriétés de luminescence

Conclusion

Morphologie

Aspect de la surface — MEB

(d) Vue de la tranche.

Couches minces de conversion de longueur d'onde

Morphologie

- ▶ Surface lisse
- ▶ Bonne densité

Morphologie

27 Mars 2012

Sébastien Forissier

Couches minces de conversion de longueur d'onde

Rendement optimal de dopage (3 % Tm et 3 % Yb dans la solution)

- ► Mesures microsonde
- Rendement de dopage n'est pas linéaire

Couches minces de conversion de longueur d'onde

Introduction

Le photovoltaïque La conversion de longueur d'onde Le matériau

Élaboration MOCVD

Caractérisation Morphologie Propriétés physico-chimiques Propriétés de luminescence

Conclusion

Sébastien Forissier

Couches minces de conversion de longueur d'onde

Composition

Rendement de dopage.

- Mesures microsonde
- ► Rendement de dopage n'est pas linéaire
- ► Température optimale de dopage : 400 °C

Couches minces de conversion de longueur d'onde

Introduction

Le photovoltaïque La conversion de longueur d'onde Le matériau

Élaboration MOCVD

Caractérisation Morphologie Propriétés physico-chimiques Propriétés de luminescence

Conclusion

Sébastien Forissier

Couches minces de conversion de longueur d'onde

Composition

Homogénéité de dopage. (5 % Tm et 6 % Yb dans la solution)

- ► Mesures microsonde
- ► Rendement de dopage n'est pas linéaire
- ► Température optimale de dopage : 400 °C
- Homogénéité de dopage dans la couche

Couches minces de conversion de longueur d'onde

Introduction

Le photovoltaïque La conversion de longueur d'onde Le matériau

Élaboration MOCVD

Caractérisation Morphologie Propriétés physico-chimiques Propriétés de luminescence

Conclusion

Composition

Vitesse de dépôt en fonction de la température.

- ► Mesures microsonde
- ► Rendement de dopage n'est pas linéaire
- ► Température optimale de dopage : 400 °C
- Homogénéité de dopage dans la couche
- ► Vitesse de croissance maximale à 500 °C

Couches minces de conversion de longueur d'onde

Introduction

Le photovoltaïque La conversion de longueur d'onde Le matériau

Élaboration MOCVD

Caractérisation Morphologie Propriétés physico-chimiques Propriétés de luminescence

Conclusion

Propriétés structurales

Influence de la température du substrat

Cliché de diffraction TiO_2 bruts.

► Cristallisation au-delà de 400 °C Couches minces de conversion de longueur d'onde

Introduction

Le photovoltaïque La conversion de longueur d'onde Le matériau

Élaboration MOCVD

Caractérisation Morphologie Propriétés physico-chimiques Propriétés de luminescence

Conclusion

Sébastien Forissier

Couches minces de conversion de longueur d'onde

Propriétés structurales

Influence de la température de recuit

Cliché de diffraction TiO_2 avec recuit.

- ► Cristallisation au-delà de 400 °C
- Les recuits améliorent la cristallinité

Couches minces de conversion de longueur d'onde

Introduction

Le photovoltaïque La conversion de longueur d'onde Le matériau

Élaboration MOCVD

Caractérisation Morphologie Propriétés physico-chimiques Propriétés de luminescence

Conclusion

Sébastien Forissier

Couches minces de conversion de longueur d'onde

Propriétés structurales

 $\begin{array}{c} {\rm Clich\acute{e}\ de\ diffraction\ TiO_2} \\ {\rm fortement\ dop\acute{e}}. \end{array}$

- ► Cristallisation au-delà de 400 °C
- ► Les recuits améliorent la cristallinité
- ➤ À fort dopage en matrice TiO₂ on obtient une phase pyrochlore

Couches minces de conversion de longueur d'onde

Introductior

Le photovoltaïque La conversion de longueur d'onde Le matériau

Élaboration MOCVD

Caractérisation Morphologie Propriétés physico-chimiques Propriétés de luminescence

Conclusion

Sébastien Forissier

Couches minces de conversion de longueur d'onde

Propriétés structurales

Cliché de diffraction Y_2O_3 .

- ► Cristallisation au-delà de 400 °C
- ► Les recuits améliorent la cristallinité
- ➤ À fort dopage en matrice TiO₂ on obtient une phase pyrochlore
- Y₂O₃ cristallise toujours en cubique même à fort dopage

Couches minces de conversion de longueur d'onde

Introductior

Le photovoltaïque La conversion de longueur d'onde Le matériau

Élaboration MOCVD

Caractérisation Morphologie Propriétés physico-chimiques Propriétés de luminescence

Conclusion

Spectre FTIR : effet des recuits.

Recuit :

- Brûle les ligands organiques restant
 - Améliore la cristallinité

Couches minces de conversion de longueur d'onde

Introduction

Le photovoltaïque La conversion de longueur d'onde Le matériau

Élaboration MOCVD

Caractérisation Morphologie Propriétés physico-chimiques Propriétés de luminescence

Conclusion

Spectres d'émission et d'excitation Spectre d'émission TiO_2

Couches minces de conversion de longueur d'onde

Introduction

Le photovoltaïque La conversion de longueur d'onde Le matériau

Élaboration MOCVD

Caractérisation Morphologie Propriétés physico-chimiques Propriétés de luminescence

Conclusion

Sébastien Forissier

Couches minces de conversion de longueur d'onde

Spectres d'émission et d'excitation Spectre d'excitation TiO₂

Spectre d'excitation

 $\blacktriangleright \text{ Tm} : {}^3\text{F}_4 \rightarrow {}^3\text{H}_6$

• Yb :
$${}^2F_{5/2} \rightarrow {}^2F_{7/2}$$

 Absorption à travers la matrice

Couches minces de conversion de longueur d'onde

Introduction

Le photovoltaïque La conversion de longueur d'onde Le matériau

Élaboration MOCVD

Caractérisation Morphologie Propriétés physico-chimiques Propriétés de luminescence

Conclusion

Spectres d'émission et d'excitation

Spectre d'émission TiO_2

Luminescence excité à 330 nm – Échantillons Yb constant $\blacktriangleright \text{ Tm} : {}^{3}\text{F}_{4} \rightarrow {}^{3}\text{H}_{6}$

• Yb :
$${}^2F_{5/2} \rightarrow {}^2F_{7/2}$$

- ► Excitation à 330 nm
- Absorption à travers la matrice
- Quenching à haute concentration

Couches minces de conversion de longueur d'onde

Introduction

Le photovoltaïque La conversion de longueur d'onde Le matériau

Élaboration MOCVD

Caractérisation Morphologie Propriétés physico-chimiques **Propriétés de** luminescence

Conclusion

Sébastien Forissier

Couches minces de conversion de longueur d'onde

Spectres d'émission et d'excitation

Spectre d'émission Y_2O_3

Luminescence excité à 210 nm – Échantillons Tm constant • Tm : ${}^{3}F_{4} \rightarrow {}^{3}H_{6}$

• Yb :
$${}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2}$$

- ▶ Excitation à 330 nm
- Absorption à travers la matrice
- Quenching à haute concentration
- ▶ Excitation à 210 nm

Couches minces de conversion de longueur d'onde

Introduction

Le photovoltaïque La conversion de longueur d'onde Le matériau

Élaboration MOCVD

Caractérisation Morphologie Propriétés physico-chimiques Propriétés de luminescence

Conclusion

Temps de vie

Déclin de fluorescence

- $\blacktriangleright \text{Tm} : {}^{3}\text{F}_{4} \rightarrow {}^{3}\text{H}_{6}$
- Ajouter Yb à une couche Monodopée diminue le temps de vie

Couches minces de conversion de longueur d'onde

Introduction

Le photovoltaïque La conversion de longueur d'onde Le matériau

Élaboration MOCVD

Caractérisation Morphologie Propriétés physico-chimiques Propriétés de luminescence

Conclusion

Sébastien Forissier

Couches minces de conversion de longueur d'onde

Temps de vie

Déclin de fluorescence

- $\blacktriangleright \text{Tm} : {}^{3}\text{F}_{4} \rightarrow {}^{3}\text{H}_{6}$
- Ajouter Yb à une couche Monodopée diminue le temps de vie
- Augmenter la teneur d'Yb à Tm constant diminue le temps de vie τ_x = <u>∫tI(t)dt</u>
 Taux de transfert : 10 % η = 1 - τ_x

Couches minces de conversion de longueur d'onde

Introduction

Le photovoltaïque La conversion de longueur d'onde Le matériau

Élaboration MOCVD

Caractérisation Morphologie Propriétés physico-chimiques Propriétés de luminescence

Conclusion

Sébastien Forissier

Couches minces de conversion de longueur d'onde

- ► IQE : il est calculé en faisant le ratio du nombre de photons absorbés par le matériau luminescent divisé par le nombre de photons émis par le matériau.
- EQE : il est calculé en faisant le ratio du nombre de photons incidents sur la matrice divisé par le nombre de photons émis par le matériau.

Couches minces de conversion de longueur d'onde

Introduction

Le photovoltaïque La conversion de longueur d'onde Le matériau

Élaboration MOCVD

Caractérisation Morphologie Propriétés physico-chimiques Propriétés de luminescence

Conclusion

Sébastien Forissier

Couches minces de conversion de longueur d'onde

Conclusion

Résultats

- ► Couches minces dopées et cristallisées
- ► Transfert d'énergie entre le Tm et l'Yb
- ► Luminescence de l'Yb sous excitation UV

Perspectives

- ► Co-dopage Ce pour améliorer l'absorption
- ► Ions sensibilisateurs différents : Tb, Er
- ► Matrices mixtes pour adapter la bande interdite : $Ti_2Y_2O_7$

Couches minces de conversion de longueur d'onde

Introduction

Le photovoltaïque La conversion de longueur d'onde Le matériau

Élaboration MOCVD

Caractérisation Morphologie Propriétés physico-chimiques Propriétés de luminescence

Conclusion

Sébastien Forissier

Couches minces de conversion de longueur d'onde

Couches minces de conversion de longueur d'onde

Conclusion

Merci de votre attention!

